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I.  Phys. A. Math. Gen. 27 (1994) 3091-3104. Printed in the UK 

Coloured FRT algebra and its Yang-Baxterization leading to 
integrable models with non-additive R-matrices 
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t Gh-Universirt Kassel, Fachbereich 17-Matematik-InformatiL. Hoilhdische Svasse 36, 
D-3500 Kassel, Germany 
f Theoretical Nuclear Physics Division. Saha Institute of Nuclw Physics, Block AF, sector 1, 
Bidhannagtx, Calcutta-700 064, India 

Received 29 November 1993 

Abstract. A ‘colour’ representation of Faddeev-Reshetikhin-Takhtajan (FRV algebra, which, in 
contrast to the standard case. is related to the wloured braid group representation with generic 
values ofq is presented. Explicit realizations of L‘i’-mauices, occurring in this coloured variant 
of m algebra are also obtained for the Uq(gl(2)) quantized algebra. Though these realizations 
are found to depend manifestly on the colour parameters, the underlying quantum gmup structure 
and associated w-product are interestingly free from such dependence This allows us to perform 
the Yang-Baxterization of the coloured FRT algebra successfully, which leads to the construction 
of an ancestor Lax operator associated with a new non-additive-typequantlrm R-matrix. Through 
different realizations of this Lax operator, a new class of quantum integrable models representing 
‘colour’ generalizations of the well known models, such as the lattice sine-Gordon model, the 
Ablowitz-Ladik model lattice and the derivative nonlinear Schr6dinger model etc, is generated. 

1. Introduction 

An elegant approach to quantized algebra and quantum group structures, which has a close 
relation with the theory of integrable systems, was formulated by Faddeev, Reshetikhin and 
Tawltajan (FRT) [l] by exploiting the duality condition of the Hopf algebra. In this approach, 
the quantum-group related algebras are represented in matrix form and may be expressed 
as 

R + L ,  (*) L2 (*)L(+)L(*)R+ 2 1 (I.la) 

RfL(+)L(-)L(-) 1 2 2 L , R ’  (+) + (1.16) 

These relations are the characteristic equations of the FRT algebra, where Li*) = L(*) 0 1, 
L y )  = 18L(*) and L(*) are upper (lower) triangular matrices with operator-valued elements 
which are related to the generators of the quantized algebra. Due to the associativity 
condition on (l.l), the matrix R+ E M+(C) satisfies the relation 

+ +R+-R+R+R+ 23 - 23 13 12 (1.2) 

5 Permanent address: Theoretical Nuclear Physics Division, Saha Institute of Nuclear Physics, Block AF, Sector 1, 
Bidhannagar Calcutta-700 064, India. 
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where R; acts non-trivially on the direct product space C" Q Cn 8 C", on the ith and j th  
spaces, and like an identity on the remaining space (e.g. Rg = R c3 1, etc). Note that 
the R+-matrix leads to a braid group representation (BGR) for i+ = 'PR+ (P being the 
permutation operator with the properly P A  8 B = B 8 AP)  

A Kundu and B Basu-Mallick 

However, we shall call the Rt-matrix itself the BGR for our convenience in what follows. 
It is interesting to observe that the FRT relations (1.1) are very similar in form to the 

.quantum Yang-Baxter equation (QYBE) 

R ( L p ) L i ( W z ( f i )  = L20LWi(WWr/L)  (1.3) 

which plays a key role in the context of quantum integrable theory 121. Here, A and p 
are spectral parameters (which may be multicomponent), L(A) is the Lax operator of the 
related integrable model and R(A,p) is the corresponding quantum R-matrix satisfying the 
Yang-Baxter equation (YBE) 

R i z ( ~ . / ~ ) R a Q , y ) R u ( l ~ , y )  = RZ~~L.Y)~IS(~,Y)RIZ(~,~). (1.4) 

However, in contrast to FRT algebra (1.1), QYBE (1.3) depends on the spectlal parameters A, p 
and is represented by a single matrix relation. Thus, the natural question arises as to whether 
it is possible to 'Yang-Baxterize' the FRT algebra, i.e. to construct a spectral-parameter- 
dependent Lax operator L(A) and the corresponding R(h,p)-matrix (which satisfies the 
QYBE) out of the elements contained in the FRT algebra. This possibility was actually 
realized [3] for the associated BGR, which, whde satisfying the Hecke algebra, was also 
found to be useful in generating a wide class of quantum integrable models through different 
realizations of the FRT algebra [4]. Remarkably, in all models belonging to this class, the 
related quantum R-matrix is additive, i.e. R(A,p) = R(A - p). 

On the other hand, in recent years, a different class of integrable model with more general 
non-additive-type R-matrix solutions of YBE (1.4) has been discovered [5-71. Therefore, 
one may also ask whether Yang-Baxterization of the FRT algebra associated with the 
standard BGR, as developed in the additive case, can be pursued even for its non-additive 
generalization? Such a construction might finally lead to Lax operators of integrable models 
with non-additive R-matrix solutions. 

It is encouraging to observe that possible generalizations of the BGR suitable for this 
purpose have already been described in recent literature and are sometimes called the 
'coloured' braid group representations (CBGR) [S-111, which obey the relation 

Although i+(A+) = PRt(A+) is usually defined as the CBGR, we shall the call R+(*,')- 
matrix itself the CBGR in what follows, parallel to the additive case. Apparently, there 
can be different approaches to conshucting such a CBGR. In [8,9] an infinite-dimensional 
representation of U,(sl(Z)) was considered and the 'colour' index was introduced as the 
values of the corresponding Casimir operator. However, for obtaining finite-dimensional 
CBGRs, q has to be restricted to the root of unity. On the other hand, Burdik and Hellinger 
[IO] have followed another original path where deformations of non-semisimple Lie algebras 
like U,(gl(Z)) were considered. Due to the splicing of Uq(gl(2)) into Uq(sl(2)) and 
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U u ( l ) ,  an extra Casimir operator enters into the picture-the eigenvalues [ A ]  of which, 
,corresponding to the representation Il;, now serve as the colour degrees of freedom. This, 
in turn, gives a finite-dimensional CBGR even for the generic values of q. Finally, another 
approach, adopted in [12], may be mentioned where the CBGR (related to U,(gl(N))) was 
obtained directly from the standard BGR in the 'particle-conserving' case by exploiting a 
symmetry transformation of the YBE. It may be noted here that if the colour indices [A} are 
interpreted as the spectral parameters (CBGR) themselves, as suggested by the form (lS), 
then they may be considered to be the non-additive-type R-matrix solutions of the YBE (1.4). 
However, the CBGR is usually upper (lower) triangular in form, while the non-additive R- 
matrices, like their additive partners, could be of more general form. Therefore, we may ask 
whether, parallel to the construction of additivetype R-matrix solutions of the YBE from the 
BGR [13], one can also formulate a Yang-Baxterization scheme for the non-additive case 
starting from the CBGR. This point is successfully dealt with in section 2 where an explicit 
( N z  x N z )  R-matrix with non-additive and multicomponent spectral-parameter dependence 
is constructed, starting from the CBGR with generic values of q. Another interesting problem 
is to explore whether the form of L(*)-matrices, appearing in the FRT algebra (I.I), can be 
generalized properly to make them compatible with the CBGR (1.5). In section 3, we find 
such a generalized form of L(*), related indeed with the CBGR, which also yields the required 
co-product structures. 

The more important question of physical relevance, as raised above, is whether the FRT 
algebra, related to the CBGR, can be Yang-Baxterized to give solutions of the QYB6 (1.3) in 
analogy with the additive case. In section 4 we investigate this problem and successfully 
perform the Yang-Baxterization of the coloured "r algebra in the U,(g l (N))  case yielding 
the explicit form of an ancestor Lax operator associated with a new non-additive quantum 
R-matrix. Section 5 gives concrete realizations of the ancestor model, generating a new 
class of integrable models. Section 6 is the concluding section. 

2. The construction of a non-additive R-matrix from the CBGR 

As is well known, for a quasitriangular Hopf algebra A there exists an invertible universal 
%matrix (a E A 8 A) such that it interrelates comultiplications A ,  A' through A(a)R = 
RA'@) (where a E A) and satisfies the following conditions 

(id.@A)RR13'&2 (A 8 id)RRl37&3 (S 8 id)RR-' 

where S is the antipode. The above relations also imply that the R-matrix would be a 
solution of the spectrally parameterless YBE (1.2). 

If one now considers the case of Uq(g1(2)), where apart from the usual generators 
S3, S* of Uq(s1(2)), a central element, or Casimir-like operator A, is included with the 
commutation relations [I41 

sin(2aS3) 
sin IY 

rs3, S*l = ?CS* [S+S-] = 

[A, &] = [A, S31 = 0 q =eia. 

As a result the standard comultiplication is also modified to yield 

A(S+) = S+ 8 4-s3 . (4s)" + (Sjq)"  '4" 8 S+ 

A(S-) = S- 8 q-s3 . (qs)-* + (s/q)-" . qS3 @ S- (2.2) 

A(&) = S3 8 1 + 1 8 S3 A(A) = A 8 1 + 1 8 A 



3094 

where an additional parameter s may appear due to the symmetry of the algebra. The other 
Hopf algebraic structures, such as co-unit and antipode, can be consistently defined and the 
universal %?-matrix may be constructed as [IO] 

A K u d u  and B Emu-Mallick 

where [m, 41! = [m, 41. [m - 1,41.. .1 with [m, 41 = (1 - qm)/(l - 4). 
Denoting now the eigenvalue of the Casimir-like operator A by A and the corresponding 

n-dimensional irreducible representation of algebra (2.1) by n;, we may obtain the 'colour' 
representation (n;t 8 n;)R, which gives a finite-dimensional CBGR satisfying (1.4). In 
particular, for the two-dimensional representation n:, one gets the CBGR [lo] as 

This type of R-matrix solution was also obtained in [15]. 
In another recent development [12], similar CBGRs, related to the fundamental 

representation of U,(gZ(N)), were obtained directly from the standard BGR by using a 
symmetry transformation of the YBE. It has been shown that, if R(A, p) is a solution of the 
YBE (1.4) with the 'particle-conserving' constraint (i.e. its elements R: are non-zero only 
when the 'incoming particles' (i, j )  are some permutations of the outgoing ones (k, I ) ) ,  
then one may construct some more general solutions k(A, A'; p,  p') depending on the two- 
component spectral parameters with elements given by 

Here, the indices i, j ,  k ,  1 run from 1 to N and $)(A'), uY)(A') &e 2N arbitrary spectral- 
parameter-dependent functions. This symmetry transformation of the YBE may be written 
in matrix form as a 'gauge transformation' 

R(h, A'; p ,  p') = F-I(A', p')R(h, p)P-'(h', p') (2.6) 

where 

with e i j  the basis of g l ( N )  with ( e i j ) k j  = Gi&j. Consequently, starting from the standard 
BGR R* which is related to the fundamental representation of U,(sI(N)) [16], 
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which evidently satisfies the ‘particle-conserving’ restriction and, using (2.6) again, one 
derives the corresponding CBGR as 

R*@.”) = F-’(A, p) . R* . F-’(,I., p) 

where @ij are arbitrary constants with the condition @ij . @jt = 1. Now, it I s  interesting to 
observe that in the particular case N = 2, along with the choice 

@I’ = 1 I (A) = 1 U:)(&) = (qs)A U‘’) (A) = q - A  IdZ) (A) = s-’ 

(2.9) 

the form of the CBGR R+”+) in (2.8) reduces exactly to the CBGR (2.4), which was 
obtained by Burdik era1 from the universal ‘R-matrix related to Uq(gl(2)) in its fundamental 
representation. On the other hand, R-@.”) in (2.8), under the same condition (2.9), reduces 
to 

We may hope that CBGR (2.8) with arbitrary N will also be similarly related 
fundamental representation of U, (nl ( N ) ) .  

(2.10) 

to the 
1_ . .. 

In analogy with the Yang-Baxterization scheme in Jones [I31 for the additive case, we 
would now like to construct the non-additive R-matrix solution of YBE (1.4) starting from 
the CBGR (2.8). Similar Yang-Baiterization was also considered by Murakami [Ill, but for 
the restrictive value of q as the root of unity (q’ = - 1) and in the particular case N = 2. 
For the BGR R+ satisfying the extra Hecke condition 

R+ - R- = (q - q-’ )  . P R- = P(R+)-’P (2.11) 

where P is the permutation operator~as defined before, Jones proposed the Yang-Baxterized 
form 

R(A’ - = q A ’ - ! J ~ +  - q - ( A ’ - ” ‘ ) ~ -  (2.12) 

yielding the additive R-matrix solution of the YBE. It may be noted that the Hecke condition 
(2.1 1) is satisfied by BGR (2.7) corresponding to Uq(sl(N)) in the fundamental representation 
and, therefore, Yang-Baxterization (2.12) is well applicable to this class of R-matrices. 

Returning to CBGR (2.8), we find that in close analogy with the Yang-Baxterization 
(2.12) performed in the additive case, it is possible to consmct a non-additive solution of 
YBE (1.4) in the form 

R ( A ,  $) = q(A’-&’) , R+@.”) - q - ( A ’ - ~ ’ )  . R-(A.”) (2.13) 
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which depends on two-component spectral parameters. This fact may easily be verified by 
using expression (2.8), which rewrites the right-hand side of (2.13) into 

A Kundu and B Bmu-Mallick 

F-’(A, ~ ) R ( A ’  - p’)F-I(k, p) (2.14) 

where R(A’-p’) is of the same fonn as in Yang-Baxterization (2.12) related to the additive 
case. Since R*-matrices (2.7) are ‘particle conserving’, the R(A’-$)-matrix, being a linear 
combination of R-matrices, is also a ‘particle-conserving’ solution of the YBE. Therefore, 
due to the symmetry transformation (2.6), expression (2.14) should be a new solution of YBE 
(f.4), thus proving the validity of Yang-Baxterization (2.13). It is interesting to note here 
that, in the particular case N = 2 and with degenerate spectral parameters A = A‘, p = p‘. 
the R-matrix (2.13) coincides exactly with the asymmetric six-vertex solution corresponding 
to the two-dimensional statistical model of ferroelectrics in an external electric field with 
both horizontal and vextical components 171. On the other hand, if we suppose that functions 
$)(A) are independent of the spectral parameters, we may recover from (2.13). with (2.8), 
the R-matrix for the statistical model due to Perk and Schultz [17]. The explicit construction 
of the non-additive and multicomponent spectral-parameter-dependent ( N 2  x N 2 )  R-matrix 
solution (2.13) is our main result in this section. Therefore, to see its structure more closely 
we present the N = 2 case for the particular choice (2.9) of functions $’(A) related to the 
CBGRS (2.4) and (2.10) 

R(A, 1‘; P. PI)  

1 q - ( A - ! 4 a ( ~ ’  - pJ) 
q(A+P)b(A’ - p,!) 

,(A-P),-().J - $) 
s-(A-P) c+ (A’ - p‘) 
q - ( A + ~ ) b ( ~ /  - p/) 

q ( A - ~ ) u ( ~ t  - pr )  

(2.15) 

wherea(A’-p’) = sina(A’-p‘+l), b(A’-p’) = sina(A’-p,’), &(A‘-$) = sinlyq*(”-G’) 
and q is taken as e’“. It will be shown in section 4 that the same R-matrix (2.15) may be 
associated with a whole class of new integrable systems. 

= (  

3. Coloured FRT algebra related to the CBGR 

The FRT algebra may be given by the relations (Lla), (l.lb), where the related R+-matrix 
is the standard BGR satisfying (1.2). On the other hand, the CBGR R+”,”) satisfies a more 
general equation (1.5) and therefore the aim is to explore the possibility of constructing a 
more general form of L(*)-matrices in the FRT algebra to make them compatible with the 
CBGR. Since, in the coloured case, the L(+)-matrix may he seen as the specific representation 
of the universal R-matrix in the form L(+)(A) = (n; @ id)R, it is expected to depend 
explicitly on the parameter A and consequently the coloured FRT algebra should take the 
following form: 

R+(h.’) LI*) (A)L;*) (p )  = L;*) (p)Ly)  (A) R+&P) 

R+(A.P)L!+)(A)L$-) c.1 = ,$) ( p ) ~ y )  (A)R+(A.@) 

(3.1~) 

(3.lb) 

where Ll*)(A) = L(*)(A)@l, L&*)(A) = l@L(*)(A), (L(*)(A) being upper (lower) triangular 
matrices) and R+”.’) is the related CBGR. One should note that a similar form for the FRT 
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algebra was previously introduced by Faddeev et a1 1181 in connection with the Kac-Moody 
algebra. We hope that, similar to the standard m(T algebra, the above coloured version will 
hold in the general case. However, we show here its validity for CBGR (2.4) through explicit 
construction of the corresponding L*(A)-matrices. 

For this purpose, for the L'*)-matrices related to the standard BGR 131, 

we propose some colour generalizations by introducing the parameter A in the form 

where G(A) = (z;~:)~; we expect that this specific choice of L(*)(A) will lead to 
a quantized algebra which is independent of the colour parameters A,  p for the as yet 
unspecified generators 5 .  Though the above forms of L(*)(A) look rather complicated, one 
may observe that at A = A = 0, they reduce simply to the known L(*)-matrices related to 
the standard case. It may also be noted that the L(*)(A)-mamces in (3.24, (3.2b) become 
similar to the L(*)-matrices related to the r, q-deformed BGR which appeared in 1161 if one 
fixes the colour parameter A and interprets it as some function of the deformation parameter. 
Nevertheless, such L(*)-matrices would only be the solutions of the standard FRT algebra 
(1.1~). (1.lb) and the deformation parameters would necessarily take some fixed values. In 
our case, however, the parameter 1, appearing in the coloured representation of the FRT 
algebra (3.14,(3.1b), may vary arbitrarily describing a more general situation. 

Inserting CBGR (2.4) and the explicit forms of L(*)(A) (3.2a),(3.2b) in (3.1a),(3.1b), we 
find, interestingly, that the coloured m algebra reduces finally into the following algebraic 
relations for $, rij (i, j = 1.2) and A, which are evidently free from colour parameters 

with all 7; commuting among themselves. It may be verified that, in addition to the central 
element A, there exist other Casimir operators of this algebra such as 

We notice that, apart from the generator A, algebra (3.3) thus obtained reproduces the same 
extended trigonomehic Sklyanin algebra as that found in the case of the standard BGR [3], 
while for the choice of generators r in the particular form 

r* 1 - 4  - Is, 
it reduces to the quantized algebra Uq(gl(2)) given as (2.1). Thus we see that the coloured 
algebra (3.1u),(3.1b), related to CBGR (2.4), is indeed able to generate the underlying 

(3.5) 1 z;:=qT" q z  = -(q - q- )S, rz1 = (q - q-')S- 
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quantum group structure which is independent of colour parameters A,&. Since the 
consfmction of L(*)(A) given by (3.24 (3.2%) is the main result of this section, we present 
it through more popular generators Si, S3, A of the quantum algebra Uq(g1(2)) using (3.5) 

A Kundu and B Baru-Mallick 

as 

which are fascinating to compare with the standard L* [l]. We may note further that, 
similar to the "r algebra (l.l), its colour counterpart (3.1) also exhibits the symmetry 
that, if L(*.')(A) and L'*.')(A) are two independent solutions of the algebra acting on 
different quantum spaces, then their matrix product AL(*)(A) = (L(*,')(L) . L(*m2)(A)) is 
also a solution with the same CBGR. Using this important property and the explicit forms 
(3.6) of L(*)(A), we may derive the related co-product structure of the quantized algebra. 
Remarkably, one finds that, although the L(*)(A)-matrices contain the colour parameter A 
in a complicated way, the resultant co-product for the generators S*, S, and A is free from 
such parameters and, in fact, coincides with the known co-product (2.2) of V,(gl(Z)). 

Similarly, it may be shown that, if we start from the CBGR R+,P), given by (2.10), 
and the same form (3.2a),(3.2b) of L(*)(A), the complementary relations of the coloured 
FRT algebra 

R - ( A . P ) L ~ )  (~p;*) = L ; * ) ( ~ L ) L I ~ ) ( A ) R - ( A ' I L )  (3.74 

R-(A.G)L(-) ( A ) L(+) (p) = L$+)@)L$-)(A)R-(+) (3.7b) 

will also lead to the same quantum algebra UJgE(2)) and its associated co-product. 

4. The Yang-Baxterization of the coloured FRT algebra and construction of the ancestor 
Lax operator related to the non-additive quantum R-matrix 

As mentioned above, a scheme for constructing the single-component spectral-parameter- 
dependent solution of the QYBE (1.3) through Yang-Baxterization of the FRT algebra (1.1) 
related to the standard BGR has been proposed in [3]. Such solutions were also applied 
in constructing Law operators of a class of quantum integrable models such as the sine- 
Gordon model, the Liouville model, the Ablowitz-Ladik model and the derivative nonlinear 
Schrodinger w) model etc, all of which are associated with the additive-type trigonometric 
R-matriw. Our aim here is to extend this idea to the case of coloured FRT algebra (3.1) 
related to the CBGR and to explore the possibility of constructing a new class of integrable 
models associated with a non-additive quantum R-matrix. 

The Yang-Baxterization of the CBGR, leading to a two-component spectral-parameter- 
dependent non-additive R-matrix solution (2.13) of YBE (1.4), was performed in section 2. 
We would now like to construct solutions of the QYBE (1.3) for the same case 

R(A, A'; p. !J')LI(L A')Lz(p, d) = Lz(P, CL')LI@. A ' ) N L  A'; &. P') (4.1) 

i.e. to build up both R(A, A', p, p') and L(A, A') through Yang-Baxterization of the elements 
R*(*+), L*(A) involved in coloured FRT algebra (3.1), (3.7). However, for explicit Yang- 
Baxterization, we restrict ourselves to L"(A) (as given by (3.2)) and to the CBGR (as 



Coloured FRT algebra 3099 

in (2.4),(2.10)), which, in turn, will lead us to the (2 x 2) Lax operators of physically 
interesting integrable models with non-additive quantum R-matrices. ~ ’ 

In analogy with the Yang-Baxterized R-matrix (2.13) constructed from R*(*+) given 
by (24) and (2.10), 

(4.2) R(A, A‘; p, = q(A’-!d)~+(A&) - - (A‘ -U‘ ) j - (AA  4 

we propose now that the form of the associated L(h, A’) operator should be 

L(h, A’) = q*‘ . L(+’(A) + 4-*’ . L(-)(A) (4.3) 

where L(*)(A) are the upper (lower) triangular matrices given by (3.2a),(3.2b). Note that 
the underlying quantum algebra and coalgebra, as shown in section 3, are independent of 
the colour parameter A. This essential property allows us to interpret the colour parameters 
as spectral parameters. Consequently, the L-operator (4.3) may depend on two independent 
spectral parameters A and A’: one coming from the colour parameter, the other from the 
Yang-Baxterization. To verify that the constructed R-matrix (4.2) and L-operator (4.3) 
are the solutions of the QYBE, we insert them into (4.1) and match the coefficients of 
different powers in spectral parameters A‘, p‘. As a result, we obtain a set of algebraic 
relations independent  of^ parameters A‘, p’ and observe that all of these relations, except 
one, coincide with the coloured FRT relations (3.1), (3.7) and, hence, are naturally satisfied 
by construction. The only remaining equation is 

R+(*.~~)L(-)(A)L~+)(~)  1 - ~-(*..’l)t~+)(h)~:-)(~) 

= LF) (p)  Lj-) (A) R+(”ll) - Li-1 (p)Ly)  (A) R-(*.~L), (4.4) 

We notice that in the colour-free case (A = p = 0) relation (4.4) reduces to 

(4.5) + (-) (+) - R-L(+)L(-) - L(+)L(-)R+ - L(-) (+I R Ll L2 1 2 - 2  I 2 Ll R- 

which was the condition found in [3] as the requirement for Yang-Baxterization of the 
standard FRT algebra. It was observed further that, satisfying the extra Hecke condition 
(2.11) for the BGR R*, equation (4.5) reduced again to some relations of the FRT algebra 
(1.1). However, in the present case, instead of,the Hecke condition (2.11), the colour 
extension of the BGR R* 

(4.6) R+(*..” - R-KP) = (q - 4-1) . p(A.!L) 

with P(*J‘) = F-’(A, p)  . P . F-’(h,  p) is satisfied, which is obtainable from (2.11) by the 
symmetry transformation (2.8). We may call P(*+) the ‘coloured permutation operator’, 
which in our concrete case (2.9) may be given by 

(4.7) 

yielding clearly the standard permutation operator P at A = p. Now using condition (4.6) 
and relations of the coloured FRT algebra,.one may further reduce equation (4.4) to 

P(*”) . (Li-)(A)LP)(p) + Ly)(A)Li-)@)) = (Li-’(p)Ly’(A) + Ly)(p)L\-)(A)). ’P(*.&). 

(4.8) 
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In the colour-free limit this equation is satisfied trivially due to the permuting property of 
'P. However, in this coloured case, the validity of (4.8) is not apparent and should be 
checked explicitly. In fact, through direct calculation, we find that for the particular form of 
L(*)(A) given by (3.2) and the related permutation operator (4.7), equation (4.8) is indeed 
satisfied exactly. It is worth mentioning here, that, although the symmetry of the coloured 
FRT algebra allows independent multiplicative prefactors of L(')(A) as arbitrary functions of 
Casimir operators (3.4) and colour parameters A, the Yang-Baxterization restricts the form 
of L(*)(A) to only (3.2a),(3.2b). Thus, our Yang-Baxterization of the coloured FRT algebra 
is completed leading to a solution of QYBE (4.1), given by (4.3) and (3.2), as 

A Kundu and B Basu-Mallick 

. 

(4.9) 

along with the R(A, A'; @, @')-matrix (2.15) as constructed through (4.2). 
This formal construction of the solutions of the QYBE may now be applied to the theory 

of integrable systems by interpreting Z(A, A') as the corresponding Lax operator associated 
with the non-additive R(A, A'; @, @')-matrix. More precisely, the operator-valued elements 
occurring in such L(A, A') might be labelled by the index n, corresponding to the nth lattice 
point, which would give the local Lax operator L.(h,A'). Operators corresponding to 
different lattice points should act on independent quantum spaces and must commute. This 
ensures the condition of ultralocality, which is crucial for solving the system through the 
quantum inverse scattering method (QISM). However, it is curious to observe that, contrary 
to the usual case, the Lax operator obtained here depends on two spectral parameters A' and 
A. The first one is present in Usual cases, while the second one, coming from the colour 
degrees of freedom, is a special feature of such Lax operators. As a consequence, the transfer 
matrix ?'@,A') kn:, Ln(A, A') of these models would also depend on both the spectral 
parameters and would, in principle, generate two sets of conserved quantities obtained as 
the expansion coefficients of In ?'(A, A') in A, and A' [Z]. Although this fascinating feature, 
in relation to quantum integrable models, might prove to be fruitful, it requires detailed 
investigation and will not be explored in the present article. Instead, we restrict ourselves 
to some special cases with single-component spectral parameters. 

It is easy to notice that if one sets A = p = 0, A = 0, i.e. considers the colour-free limit 
of L(A, A') (4.12) and R(A, A'; @. p') (2.15), they wouldreducerespectively to the 'ancestor' 
Lax operator of [3,4] and the well known additive trigonometric R-matrix related to the 
six-vertex model. Through different reductions, this 'ancestor' Lax operator was shown [4] 
to recover a wide class of quantum integrable models including the spin-; XXZ chain, 
the lattice version of the sineGordon model [19], the Liouville model and also generated 
a novel derivative NLS model [ZO], all of which naturally shared the same trigonometric 
R-matrix structure. On the other hand, fixing the colour parameters A,  p as A = @ = 0, one 
gets, from (4.9) and (2.15). another 'ancestor' Lax operator with an additive-type R-matrix 
obtainable from the six-vertex model through some 'gauge transformation' [ZI] and related 
to the deformed GLP&) quantum group [16]. This Lax operator [4] yields another set 
of integrable models including the 6V(1) spin chain [221, the Ablowiw-hdik model [23] 
and the relativistic Toda chain [24]. This shows that the construction proposed here, based 
on the Yang-Baxterization of the coloured FRT algebra, may reproduce different classes of 
integrable models, considered previously,.at particular limits of the colour parameters. 

However, it should be stressed that the construction (equations (4.12) and (2.15)) is 
powerful enough to yield more interesting classes of models associated with the single- 
component but non-additive spectral-parameter-dependent R-matrix. To achieve this, we 
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may consider the colour parameters A,  p not as independent variables, but as some functions 
of other specbral parameters A’. d. For simplicity, we may choose A = ch’+O, p = cp’+O 
and set s = q’”, where c and B are constant parameters. This simple choice reduces the 
general form of the R-matrix (2.15) to 

RG’, p‘) 

1 
-@.’-!L’)d&’-!&? 

qC@‘+!&’)+”b(h’ - pf) sinot 
= ( q  sin ot q-c(A”+W’)-28b(A’ - @/) 

q~(A‘-~’)a(hf - 
(4.10) 

with the same form of a@’ - p’) and b(h’ - p’) as defined in (2.15). It is remarkable that 
this R-matrix is evidently non-additive in nature and depends on the sum as well as on the 
difference of the spectral parameters. It is also easy to observe that, at the c = 0 limit, 
(4.10) reduces to the additive form, recovering the well known case discussed above. The 
same choice of parameters A ,  p, s and a trivial scaling of the Casimir-like operator A, as 
A -+ 0 +CA, also simplifies the form of the L-operator (4.9) as 

(4.1 1) 

One of the main results of this section is the explicit form (4.11) for L(h‘), which may be 
considered as the ancestor Lax operator of a new class of integrable models satisfying the 
QYBE (1.3) with a non-additive quantum R-matrix (4.10). 

5. Construction of a new class of models through explicit realizations of the ancestor 
Lax operator 

We show here that different realizations of the generators 5 of the underlying quantized 
algebra (3.3), inserted into the ancestor Lax operator (4.11), would generate a specific class 
of quantum integrable models with a novel non-additive quantum R-matrix (4.10). Let us 
consider first a realization of generators 5 in canonical operators U and p with the standard 
commutation relation [U, p] = i/A, where A is the lattice constant. This may be given as 

(5.1) 
- -5; = -@mAeiuu *; = -*; = -limAe-’@U *I - 2 

z12 = e-’*Pg(u) y1 = g(u)eiAp 

where g(u) = [I+$m2A2.cos Z o r ( ~ ~ + ~ ) ] ’ / ~ .  Inserting realization~(5.1) into the general form 
(4.14), we obtain the representative Lax operator of an integrable lattice model. Interestingly, 
at the limit c = 0 = 0 and A = 0, one recovers the renowned lattice sine-Gordon WG) 
model [lg], associated with the additive R-matrix. Therefore, the present model with non- 
trivial c, e and lattice-point-dependent A,, which is related to the non-additive quantum 
R-matrix (4.10) may be considered as a new ‘colour’ generalization of the LSG model. 



3 102 A Kundu and B Basu-Mallick 

Consider now a q-oscillator realization of generators r in the form 

where K = ((A/2) 
[25,261 

and operators A ,  At ,  N satisfy the q-commutation relations 

[ A , W  = A  [ A t , N l  = -At AAt - (Q)i'AtA = (Q)" (5.3) 

with = q2 = ez'". This realization generates, from the ancestor L(A') (4.11), the Lax 
operator of a novel integrable model involving q-oscillators, which at the colour-free and 
8 = A = 0 limit recovers the lattice version of the derivative NLS model studied in [ZO]. 
Therefore, the present model is again a generalization of the lattice derivative NLS model 
with the inclusion of parameters c ,  0 and operator A,, and is associated with a non-additive 
quantum R-matrix. 

We should observe that the generators 5 can have another different realization through 
q oscillators given in the form 

t - -Wt(l/Z)-S) 
5; = 3- = 0 rl- = q - ~ t ( ~ / 2 ) t e )  4 - 4  

(5.4) 
rlz = f ( N ) A t  r21 = A f ( N )  

where f2(N = (q-' - q)q-N and operators A ,  At,  N satisfy the same commutation 
relation (5.3) but with = q. When inserted into L(A') (4.11), this realization yields yet 
another quantum integrable lattice model depending on external parameters 8 ,  c and lattice- 
point-dependent operator A,,. To see the physical relevance of this model, we fix the value 
of parameter 8 as -;, which greatly simplifies the representative Lax operator to yield 

(5.5) 

where b qN/z(q-l - q)'l2At is another form of the q- 
oscillator with algebra q-'bbt - btb = q-' - 1 as introduced by Macfarlane [Z]. Notice 
that, at the limit c = A. = 0, the Lax operator (5.5) coincides exactly with that of the 
well known Ablowitz-Ladik model 1231. Consequently, the model represented by the Lax 
operator (5.5) is a quantum lattice model associated with the non-additive R-mahix (4.10) 
(with 8 = -+), and is an integrable generalization of the Ablowitz-Ladik model. 

In a similar way, starting from Lax operator (4.11) and taking other realizations of 
the generators r ,  one may expect to construct other different quantum integrable lattice 
models, including generalizations of the lattice Liouville model, the relativistic Toda chain 
etc. It should be emphasized again that all these varieties of integrable models belong to 
the same descendent class since they are.obtainable from the same ancestor model (4.11) 
and share the same non-additive quantum R-matrix (4.10), which itself is a new result. The 
construction of the Hamiltonian and the determination of the energy spectrum of this class 
of models through the QIsM deserves detailed investigation and will not be considered here. 

AqN12(q-' - q)'lZ and bt 
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6.  Conclusion 

The FRT algebra related to the quantum group is able to generate a wide class of quantum 
integrable models through Yang-Baxterization. However, such models, which also include 
the sineGordon model, the spin-; XXZ chain, the Ablowitz-Ladik model and the 
derivative NLS model etc. are all associated with additive-type R-matrices. These R- 
matrices, in turn, are obtainable again from the standard BGR through Yang-Baxterization. 

On the other hand, there exist physical models with non-additive R-matrices. For 
example, the one-dimensional Hubbard model is related to a quantum R-matrix which 
depends on the sum, as well as the difference, of the spectral parameters. Similarly, a 
ferromagnetic model in external fields also exhibits non-additive-type dependence on the 
R-matrix. With the aim of generating such classes of integrable models, we focus here on 
the colour realization of the FRT algebra and succeed in constructing a new ‘ancestor’ Lax 
operator through its Yang-Baxterization. The corresponding non-additive-type R-matrix is 
also obtained by starting from the coloured BGR. 

Interestingly, together with this promising scheme we are also able to find explicit 
forms of the elements L(*)(h) for the coloured FRT algebra in the Uq(g1(2)) case. Though. 
these (upper or lower triangular) matrices are found to depend manifestly on the colour 
parameters, the underlying quantum algebra and the associated co-product determined by 
them turn out to be the standard ones, devoid of any colour parameters. To achieve our 
goal of generating integrable models, we have had to further Yang-Baxterize this coloured 
algebra to find some algebraic relations for the consistency condition. In the standard 
case, the extra Hecke condition itself trivially satisfies such relations. In the coloured case, 
however, the situation become more complicated and their validity has to be checked by 
direct computation. 

It is important to stress that the Lax operator and the R-matrix, found through such 
Yang-Baxterization of the coloured FRT algebra, represent, in general, an altogether new 
class of models with two-component spectral pinmeters: One of these spectral parameters 
comes from the colour degrees of freedom, while the other one is the usual parameter 
introduced through Yang-Baxterization. Such models might be of physical interest and 
should be investigated separately. At the colour-free case, as expected, we recover the large 
variety of models obtained previously by us [4,19], while for the simplest choice of linear 
dependence between two sets of spectral parameters a new class of quantum integrable 
models emerges, which is associated with an interesting non-additive quantum R-matrix. 

Different realizations of the same underlying quantized algebra in more physical entries, 
like bosons or q-oscillators, are found to yield a variety of quantum integrable systems; for 
example, the ‘coloured’ extensions of the lattice sine-Gordon model, the Ablowitz-Ladik 
model or a lattice derivative NLS model etc. It is curious to note that the associated R-matrix 
of all such models turns out to be dependent only on the sum and difference of the spectral 
parameters, just as in the ease of the one-dimensional Hubbard model. The problem of 
constructing the Hamiltonians of these models, along with the energy spectrum through 
the QISM, has not been carried out here and should be studied separately. It is also worth 
investigating whether the class of lattice models obtained here would also generate new 
integrable field models at the continuum limit. in parallel to the colour-free case. The 
extension of the scheme presented here to semisimple algebras would also be a promising 
problem, 
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